
CloudCats
Rory Smith

University of Bristol - Department of Computer Science
Email: rs14369@my.bristol.ac.uk

I. INTRODUCTION

The New York Times described cat images as ”that essential
building block of the Internet” [1]. In 2015, more than 2
million cat videos existed on YouTube, with an average of
12,000 views each [2] - a higher average than any other
category of YouTube content.

Blatantly, the internet enjoys cats, but with 1 billion hours
of video watched on YouTube per day [3], there is still plenty
of scope for more cat content. Videos of humans currently
monopolise the internet’s video sites, but Cloud Cats aims to
solve that, by converting these to cat videos in near real-time.

After replacing youtube.com with cloudcats.cloud in a
YouTube video’s URL, users can stream the alternate version
of their chosen video, in which human faces are replaced by
their feline counterparts. By making use of the MPEG-dash
streaming protocol, playback can begin before the entire video
is processed, and given enough compute power, in real-time.

For an example of the system in practice, go to
https://cloudcats.cloud using Google Chrome 1.

Fig. 1. The Pussycat Dolls.

II. DESIGN

A. Cloud Provider

Cloud providers often offer PaaS (Platform as a Service)
solutions that are sold as reducing the time needed to develop
and maintain parts of a system. AWS (Amazon Web Services)
have many of these PaaS such as S3 object storage and elastic
beanstalk which aids application orchestration. While reduced
development time is a valid benefit, these have the side-effect

1Due to limitations of the underlying video container.

of locking users in to the cloud provider. If the need arose to
switch to a different provider, significant resources would be
required to rewrite the application for another provider’s PaaS.

Cloud providers typically sell IaaS (Infrastructure as a
Service) too, whereby customers can rent virtual or physical
machines, to which they have comprehensive access. This
provides a much higher level of control for users, with the
drawback that more time is required to setup and maintain
individual components.

For example, Oracle’s object storage PaaS automatically
grows its disk space and distributes requests to ensure high
availability. Setting up an object storage server in an IaaS
context however, may require manually solving those tasks
on an individual basis.

One of the core goals of CloudCats, was to build a sys-
tem capable of being deployed to any cloud provider. Thus,
the system is heavily containerised, with minimal provider-
specific dependencies. As a consequence, when looking for
an appropriate cloud provider for this project, we examined
IaaS offerings rather than PaaS. On this basis, we concluded
that using OCI (Oracle Cloud Infrastructure) would meet our
requirements the best, as we could apply a student discount for
free compute credit and its offerings did not seem significantly
less than more established competitors 2. Although other
providers such as AWS and Google provide free offerings,
we had already exhausted these in the past.

B. Video Transcoding

Another key goal of CloudCats was to perform real-time
rendering and streaming. For this, it was necessary to either
render and serve the entire video in milliseconds or render the
video in real-time and stream it to the client as frames were
completed.

After investigating different video formats, we found that
a new format known as MPEG-Dash could allow streaming
of chunks as they were produced. A codec like MPEG4
on the other hand, cannot be streamed as it is rendered,
because of header dependencies in the video container. We
quickly decided to stream using MPEG-Dash, rather than
perform a complete render in milliseconds, due to the lower
computational requirements.

To manipulate individual video frames, we knew that we
would need to distribute them across numerous workers to
obtain a real-time bandwidth. To do this, we do not wait
for the entire video to download, rather, we use UNIX pipes

2We would later find this difference to be far larger than initially estimated.

mailto:rs14369@my.bristol.ac.uk
https://cloudcats.cloud


to redirect the download stream from YouTube into a media
utility called ffmpeg. As the video downloads, ffmpeg outputs
frames on stdout, which we upload to object storage and post
worker jobs for.

In the mean-time, the video’s audio stream is downloaded
separately and shaped into 2 second chunks in the MPEG-Dash
format. These are then written to object storage. The time it
takes to process the audio stream is negligible in comparison
to the video process, and so we will spend our time examining
the video process for the most part.

Frame workers take the frame jobs and apply face detection
to replace human faces. For this, we use an open-source
framework called OpenFace [4]. We don’t go into specifics
about the face detection due to this paper’s focus on the
cloud aspect. The accuracy of the face detection suffers a little
because of this, but is still smile-inducing.

The individual frame workers receive jobs in frame chunks,
to amortise the cost of data transferal and job communications.
This means a worker may process 1 to n many frames per job.
Finding n is a difficult task, as a value too low will result in
IO-dominated work, whereas a value too high would increase
the rendering latency as the whole chunk must be processed
before any frames can be used in the final video. Processed
frames are then placed on object storage and a frame chunk
job finish event emitted. We found through empirical trials,
detailed in fig 2, a value around 5 to provide the best balance
between time-per-frame and chunk time.

Fig. 2. Time taken for a frame worker to process a single frame chunk
across different frame chunk sizes.

The final video transcoder component awaits these frame
chunk job finish events, and constructs the final video from
the processed frames. It must maintain correct frame order, as
frame workers do not necessarily finish in the order they were
started. If this is not corrected for, then a video may appear to
skip back and forward frames. We must also ensure that we
glue frames back together at the same framerate as the original
video played. If we choose another framerate, the audio stream
will not end at the same time as the transcoded video. The
processed frames are then piped into another ffmpeg instance
which periodically outputs MPEG-Dash video chunks which
we place in object storage.

Unfortunately, due to our use of MPEG-Dash, and current
browser compatibility, CloudCats must be browsed using
Google Chrome. Luckily, Google Chrome currently enjoys
a 58.83% market share [5]. Future work may add additional
media containers to allow for multiple browsers by supporting
many concurrent data streams, which MPEG-Dash natively
supports.

III. IMPLEMENTATION

To help containerise individual components and reduce any
dangling dependencies, each component exists as its own
Docker image. This way, we were able to run the system in its
distributed form locally, during development, and then easily
deploy the containers later. Docker also maintains a public
registry of images available to the public. These are maintained
by the Docker community and allow anyone to use the images
as the starting point for their own images. This meant that
CloudCats can take advantage of pre-built images to bypass
complex setup dependencies and compilation times. There are
also security disadvantages to this, as discussed in section III-I

A few components have shared library dependencies. For
example, video/audio download and video transcoder all re-
quire the ffmpeg library. To manage this, these images are
built on top of our own custom pre-compiled image with the
required ffmpeg dependencies. This reduces the time needed
to compile each component’s own image as Docker will only
spend time compiling the extra component-specific steps.

All components interact with datastores and a message
queue. Thus, we maintain shared coding interfaces for these
that hide the implementation details from components. In
this way, we can easily iterate different implementations of,
say, a message queue, without requiring the refactoring of
components.

The architecture of CloudCats is defined visually in fig 8.

A. WebApp

The front-end of CloudCats is served using a NodeJS frame-
work known as ExpressJS. This software stack is desirable
because as of December 2017 [6], the NodeJS module repos-
itory NPM contained more than 500,000 modules. Combined
with ExpressJS, this provides the needed libraries to carry
out much of our required functionality. For example, vertical
scaling can be achieved with ExpressJS and the cluster module
[7]. The horizontal scaling of instances is discussed later in
section III-H. We also make use of socket.io to maintain
websocket connections with individual clients. We use this to
communicate status updates in the video’s rendering process
with the client and maintain a healthy user experience.

The webapp also acts as the entrypoint for video render
requests. It must start a rendering job when no such job
exists and make sure not to start a video job if the video
is already being processed. To communicate jobs, the we-
bapp communicates with a standard messaging queue, using
AMQP (Advanced Message Queuing Protocol). This provides
a generic queuing interface so we have the potential to use
many different queue providers.



The same queuing protocol is used to listen for updates
throughout the render process. By subscribing to the appro-
priate queue, the webapp can listen to updates published by
other parts of the system. As this uses a pub/sub system, many
webapp instances are able to subscribe and consume the same
message from a queue and so many client browsers can wait
for the same video to complete.

The video stream itself is rendered with the help of DashJS
[8], which takes MPEG-Dash stream segments, and manages
the video state. This lets us focus on the server-side rather
than client-side implemenation details. On top of this, we
also use Twitter Bootstrap to accelerate development of the
visual elements on CloudCats. Resource dependencies such
as Bootstrap and DashJS are loaded through CDNs (Content
Distribution Networks) to reduce load on our servers and
decrease total page load time.

To prevent running multiple jobs for the same video simul-
taneously, the webapp communicates with a Redis database.
Redis stores key-value mappings in memory, and is used by
many for caching due to its low latency. We simply store
values on a per video basis, to form a semaphore-like system
with low latency. Due to the sparse amount of data stored in
the database, we use a single Redis server, but Redis can easily
be clustered by sharding a database across multiple Redis
instances, which we could autoscale according to some metric
such as available memory. As the Redis database only contains
records that try to prevent wasted concurrent computation, it
is not strictly vital to the running of CloudCats 3. Thus, we
do not implement any data persistence techniques.

The webapp must also correctly sanitise user input. Due to
the error-resilient nature of the architecture, an invalid video
ID would end up being processed in perpetuity as the system
fails to find a video matching the required and ID and retries
later. While catching this sort of error at a component level
for every component is a viable solution, it is considerably
more work than what we do: performing a check at the point
at which a user inputs the video ID.

B. Audio/Video Download

When a video job is requested, two different types of
NodeJS workers will accept the job. Due to the way that
YouTube delivers its content, audio and video streams are
commonly downloaded separately. Thus, we use two different
workers. Both pipe their download stream into an ffmpeg
instance, but the audio downloader outputs the final MPEG-
Dash audio chunks. The video downloader, instead produces
individual image frames which are bundled into chunks. Both
downloaders upload output to object storage, although video
frame bundles are stored in a private bucket as they are only
needed internally. Restricting access to the bucket like this
may not seem necessary at first glance but is good practice
as following a system of least privilege, we can minimise the
consequences of any unauthorised, malicious access.

3Internal APIs to the Redis database implement soft-fail techniques so that
if the database is unavailable, the requesting application can continue cleanly
as if the intended record did not exist.

C. Frame Worker

Frame jobs are accepted by a large number of frame
workers. These are written in Python, as OpenFace (the face
detection framework) only includes Python bindings. Frame
workers still interact with object storage and the AMQP queue.
After faces are recognised, we apply landmark detection to
find the degree to which the face’s mouth is agape. Then we
can then place a cat face in correct location and scale, as well
as open its mouth to mirror the human’s. Finished frames are
uploaded to internal object storage and jobs placed on the
queue to indicate finish.

OpenFace comes with built-in support for GPU computa-
tion, which dramatically improves performance. During de-
velopment, we were never able to get hold of a GPU to test
this locally or indeed on the Oracle cloud, but the author
of OpenFace, Brandon Amos, claims using a GPU can cut
inference time in half, compared to an 8-core CPU [9].
The OCPUs (Oracle CPUs) we use in practice are roughly
equivalent to about 0.5 CPU after virtualisation. Thus, gaining
direct access to an entire GPU would reduce times from ∼ 5s
per frame chunk to ∼ 156ms.

Thus, to achieve real-time rendering using virtual CPUs, we
require large numbers of instances. To this end, we exhaust
our CPU quota to bring real-time speed on a single video at a
time. While multiple videos can be rendered simultaneously,
neither video will process in real-time. As discussed in the
last paragraph, this would easily be alleviated via horizontal
scaling given a few GPUs or simply more CPU instances.

D. Video Transcoder

The finished frame bundles are finally collated by a
transcoder, whose job it is to order the frames correctly and
output the MPEG-Dash video chunks. These chunks are then
uploaded to public object storage, in the same bucket as the
audio chunks. After the first chunk is produced, we also
produce an MPEG-Dash manifest which describes the video,
and publish a message to indicate that the video rendering has
started, which is picked up by the webapp and communicated
to the client browser via websockets.

E. Object Storage

To implement object storage, we use an opensource object
storage server called Minio [10]. Minio can be setup in
distributed mode which allows pooling of multiple drives into
a single object storage server. This also increases availability
as Minio maintains data integrity so long as half or more of
the designated disks are online.

As we had abstracted the object storage implementation
from the rest of our components we were able to experiment
with using Oracle’s object storage API, but found UL/DL
speeds to be too slow for real-time video. We experienced
4 second upload durations for single 22Kb frames and 40
seconds for 10 frames, showing no amortisation through batch-
ing requests. As a consequence, we use our own distributed
Minio cluster, which performs much faster. This also aligns



well with our core goal, which is to reduce our dependencies
on provider-specific platforms.

F. Message Queuing

As with object storage, Oracle provides a Messaging Cloud
Service for customers to use. Rather than spend time devel-
oping a custom client to interface with their message queue,
we chose to run our own using a mature implementation of
AMQP called RabbitMQ [11].

Like Minio, RabbitMQ also has a distributed mode. We
setup RabbitMQ in clustered distributed mode to connect
multiple machines to form a single message broker. Doing
so allows us to increase availability and message throughput,
which is important when we want to achieve a high rendering
framerate.

Choosing a message queue, rather than another commu-
nication method such as database polling or raw socket
connections, provides us a highly abstracted communication
channel, with a low overhead. RabbitMQ scales very well with
thousands of messages, as CloudCats is likely to produce [12].
By disabling RabbitMQ’s persistent disk storage of messages,
we can dramatically improve the message throughput by about
a factor of 5 [13]. The decoupled nature also means that we are
able to implement parts of the system in different languages
without having to worry about language or framework-specific
communication interfaces. This let us write a system written
predominantly in NodeJS, with a single Python component
that still communicates flawlessly.

An important feature of using AMQP with RabbitMQ is
the ability to acknowledge messages. By only acknowledging
messages when a process has successfully executed, we are
able to harden our infrastructure against instance failures
or code crashes. In the case that one of our components
breaks after consuming a message to download a video, for
instance, another video download instance will start the job
after some timeout because the original message was never
acknowledged.

Crashed processes can be detected quickly by a broken con-
nection to bypass a timeout, but sometimes network conditions
can cause nodes to become isolated. To help protect against
adverse network issues, we use heartbeats to detect broken
connections. By sending pings back and forth every n seconds,
a missing ping can be used as a signal of bad health. This
helps us recover from failures much faster than otherwise.
From various experiments, we found a heartbeat interval of
20s gave us the fastest recovery time without producing too
much chatter on the network.

Fig. 3. A graph for the frame jobs queue, showing an increasing backlog
of frame jobs, when they should remain constant over time. This was
the result of an insufficient number of frame workers.

RabbitMQ’s online management console also proved helpful
when finding bottlenecks in the pipeline. By examining the
publish and acknowledgement rates of different queues, it was
easy to find components that were not processing data fast
enough, like the frame workers in fig 3.

G. Reverse Proxying

As a design decision, we did not want to publicly expose
Minio bucket URLs. In regards to security, we deemed it
useful to hide our internal architecture, and we simply did
not want to expose Minio’s relatively verbose URLs. Instead,
we opted to reverse-proxy object storage requests through our
webapp, which allowed us to map a simpler URL scheme to
Minio’s. Although Minio’s object storage server provided fast
responses, we found that reverse-proxying download requests
through our webapp introduced significant delays. In an at-
tempt to mitigate these slow requests through the ExpressJS
webapp, we introduced an Nginx reverse-proxy. This way, we
are able to filter off all object storage requests straight to Minio
using a more mature platform designed specifically for the
task. We can also introduce response caching as this is built
in to Nginx at its foundation.

Fig. 4. The Google Chrome inspector pane shows the faster request
responses after adding an Nginx reverse-proxy. Prior to this, it was
common for response times to exceed 5 seconds.

Examining Google Chrome’s networking inspector pane in
fig 4 allowed us to see the improvements gained from this
approach. By combining this with relocating our datacentre
closer to the UK, we were able to reduce some requests from
15 seconds to 1 second. We also store static Javascript and
CSS content on Nginx rather than the ExpressJS webapp to
help speed up initial page loading and reduce server load were
CloudCats to experience higher traffic.

H. Orchestration

Up until this point, we have only discussed individual
components, each residing in its own container. During de-
velopment these could be run together using Docker compose
but to run these on the cloud though, requires the management
of nodes and distribution of these containers across nodes.

To carry this out, we run Kubernetes, which can automate
the deployment, scaling and management of containerised
applications [14]. We setup a master Kubernetes node, whose
job it is to manage work across subsequent worker nodes.
Kubernetes takes descriptions of a system as YAML files
called deployments. These take the forms of specifications



that describe different components, such as the transcoder or
web app in the case of CloudCats. Along with details on
how to start a component such as the Docker image, these
specifications also detail the number of instances that should
be running. Kubernetes calls these pods, where a single node
can run many pods. We find it is easiest to compare Docker
containers to Kubernetes pods, with the exception that pods are
also networked into the Docker networking system, detailed
below.

Alternatives to Kubernetes exist, such as Docker Swarm
[15]. While these are mature in their own right, and may
arguably fit with our other design choices (such as using
Docker Swarm with our Docker images), Kubernetes appeared
to have the strongest online community and a large selection
of documentation. In retrospect, this worked well, as online
discussions helped considerably during development of Cloud-
Cats.

To network together the containers across nodes, we use an
overlay network called Calico 4. Calico helps direct commu-
nications between containers using a private subnet separate
from the one the nodes are networked upon.

Along with the Kubernetes DNS, this allows us to apply ser-
vice discovery in our system using a key-value etcd datastore
pod. Using this technique, Kubernetes resolves custom names
such as obj-store-master and messaging-master to the correct
internal address of the service. Beyond name resolution, ser-
vice discovery also acts as an internal load-balancer, routing
requests for names across all available pods of that type. This
vastly reduces the complexity of manually networking together
the containers.

Kubernetes performs periodic health checks upon nodes
to ensure availability. If it finds an unresponsive node, it
will redistribute work to other nodes to maintain the number
of requested instances specified in deployment configuration
files per instance type. By using a system to automatically
verify node health, we can minimise downtime significantly
in comparison to manually verifying nodes.

We make use of the public Docker Hub to host our instance
images [16], which we can reference in our deployment
configurations for Kubernetes to build instances from.

Although Kubernetes provides support for auto-scaling
nodes up and down based on the current workload, this
requires interfacing with the cloud-provider’s API to do so.
Kubernetes cloud provider interfaces exist for many popular
providers such as AWS and Google but lacks one for OCI. Al-
though OCI includes an API to add/remove compute instances,
it was outside the scope of this project to write a plugin for
Kubernetes and so auto-scaling remains unimplemented. Our
choice of Kubernetes though, means that auto-scaling works
out-of-the-box on other platforms and would work on Oracle
easily, given an applicable interface.

To reduce manual work with individual instances, we
created bootstrapping scripts to prepare new instances for

4We used Flannel for most of the development until it became clear that it
was causing serious network disruptions at seemingly random intervals. Per-
haps it did not mesh well with the Oracle image’s networking configuration.

Kubernetes 5, along with deployment scripts that perform the
commands required to update existing Kubernetes pods from
the master node.

I. Networking

CloudCats makes use of the OCI [17] networking facilities.
Instances are run within a VCN (Virtual Cloud Network)
with security lists that limit ingress traffic to specified ports.
Doing so protects our public instances from malicious attacks
on ports that the public does not need access to. On top of
security lists that essentially act as network firewalls, we also
implement firewalls locally on a per-instance basis. At the low
level this is accomplished using iptables, which Docker also
uses to route data. We spent considerable time ensuring that
our own iptables security rules meshed well with those of
Docker and did not disrupt traffic.

While on the topic of security, it is notable that we based our
own images on top of those in the publicly available Docker
registry. This opens us up to potentially malicious activity
running inside our own images, if we are not careful about
our image choices. We were conscious of this threat, and so
actively checked the dependency chain of images we use.

Although using HTTPS instead of HTTP may seem like
overkill, we found that it was necessary to induce a clean
user experience. As YouTube serves all of its content un-
der HTTPS, simply replacing www.youtube.com with cloud-
cats.cloud would fail if we did not support HTTPS. To this
end, we generated a certificate using Let’s Encrypt [18], and
added a HTTPS listener to our load balancer along with the
certificate. This way, the Nginx instance sitting behind the load
balancer need not implement SSL, and it remains completely
oblivious to the entire process.

We place separate subnets across distinct availability zones
to help protect against system failures. By including a public
load-balancer and performing health checks, we can easily
route traffic to a healthy instance of CloudCats. The load-
balancer accepts different routing rules; a round-robin strategy
attempts to allocate requests across all internal instances
equally, whereas IP hashing tries to route the same client
to the same internal instance across subsequent requests. As
maintaining distributed state is not typically a fast operation,
and our system requires low latency, we end up storing user
state in small regions before propagating later. Due to this,
we use IP hashing so that data computed for a user in
one availability zone can still be accessed by that user in
subsequent requests. Later, this data is propagated to other
zones and made available as a pre-computed resource. As
we use a single public load-balancing entrypoint, we are
able to map our cloudcats.cloud domain straight to the load-
balancer’s public IP address. This means that even if internally,
IP addresses change, the public address can remain constant.

5Tasks took the form of installing library dependencies and uploading
authorization tokens.



IV. ANALYSIS

A. Scaling

Due to CloudCats’ orchestration using Kubernetes, au-
toscaling can trivially be implemented. Instead of defining a
deployment in which we define a static number of instances,
we can make the number of instances a function of some other
metric. It is common to use CPU utilisation for this, but doing
so may be problematic for our use case. Since the number
of available frame jobs can vary rapidly, so can the CPU
utilisation, and so autoscaling may rapidly up and downscale.
Instead, we can use a custom metric, such as the number of
currently processing videos, to steer our autoscaling at a more
controlled rate.

Combined with our use of message queues, CloudCats can
then scale horizontally with ease, as the jobs will be split
across all available nodes. As well as the ability to horizontally
scale, Kubernetes also gives us the power to scale up individual
components, rather than the entire system as a whole. This
means that the number of frame workers may scale rapidly
for a single high-framerate video, while the number of other
component instances remains low, which helps us to keep our
running costs as low as possible.

Although autoscaling is unimplemented for OCI, we are
still able to provide examples of how the system scales
manually. Fig 5 shows that as we add more OCPUs to the
system, it can process a single video at a faster rate. The
components that support the workers, such as the RabbitMQ
messaging queue and the Minio object storage, cope with the
increased throughput, indicating that the bottleneck lies with
the available processing power. The same experiment can be
repeated for two videos, requested in parallel. In this case,
results are almost identical to that of the first experiment, only
with constantly higher processing times 6

Fig. 5. Time taken to process a single video (of duration 206s) by the
system when using different numbers of OCPUs.

As we are able to manually increase the number of clus-
tered RabbitMQ instances successfully and there is significant
evidence [13] that the platform can scale under such a setup,
it seems fair to argue that the messaging component can scale

6Due to the increased load.

7. As with the processing pipeline, this could be configured
to autoscale, based on some metric such as incoming packet
count.

In regards to video properties, many do not affect our ability
to process in real-time. The only property that does affect
us is the video framerate. As is visible in fig 6, we are
able to achieve a framerate that hovers around 25fps. Thus,
when processing video filmed at 30fps (or higher), CloudCats
struggles to process in real-time.

Fig. 6. Throughput of frame jobs showing an average 5/s rate. This
was recorded with a frame chunk size of 5 and so equates to 25fps.

Although the load balancer points to a single port when
routing traffic to an availability zone, our use of Kubernetes
services means that this traffic is then distributed to as many
webapp instances as are available. Due to this setup, we
can safely increase the number of webapp instances to scale
horizontally, allowing Kubernetes to perform service discovery
and route to the instances.

Kubernetes efficiently deals with horizontal scaling across
many nodes, but it also manages to successfully vertically
scale on single nodes. As mentioned previously, Kubernetes
spawns a series of pods per node, which each run their own
Docker container. In practice, this means we are able to run
an ensemble of different machines, with differing hardware,
and Kubernetes will distribute pods across these in a manner
that reflects the hardware available on each. Consequently,
when running a virtual machine instance with 4 OCPUs and
a bare metal instance with 36 OCPUs, we find that of our 46
pods, 40 are placed on the bare metal instance. This gives us
great power by removing the need to use identical nodes and
upgrade single nodes if we wish.

Even though we do not use it, Kubernetes also supports
node labels. Combined with GPU nodes, this would let us
tell Kubernetes to place certain deployments (such as frame
workers) on GPU nodes to make use of the node-specific hard-
ware. We experimented with using labels to define pipeline and
supporting infrastructure nodes so that we could ensure the
supporting infrastructure always had sufficient compute power
available. Doing this had no positive effect on performance
though, and as it required extra effort, we decided not to carry
it forward.

B. Provider Independence

One of the goals of CloudCats was to be deployable on
any cloud IaaS provider. To measure the success of this, we
ran a small scale test on AWS EC2. The automatic node
setup scripts which we created to ease deployment of nodes
worked flawlessly to configure each instance. We found the

7The same argument can be made for the Minio object-storage component.



majority of our time was spent understanding and configuring
the networking between the instances. After networking the
instances together, CloudCats worked just as well as on
OCI, albeit at a lower relative performance due to the fewer
instances we deployed (to avoid high costs).

C. Current Limitations

Unfortunately, although CloudCats does perform well,
achieving real-time rendering and streaming, it has been
difficult to achieve auto-scalibility using Oracle cloud. As
mentioned in previous sections, Kubernetes lacks an interface
for the OCI API which would allow automatic node scaling
operations based on resource demands. Further, the Oracle
student discount limits the number of available CPU instances
at a given time to 6 8. What this means in practice is that
rendering of videos can sometimes fall behind real-time.

Another restriction of Oracle’s student discount is the inabil-
ity to use their GPU instances. By using a GPU rather than
a node’s CPU, the frame workers would be able to achieve
a substantially higher throughput, reducing the number of re-
quired workers, while also increasing the rendering framerate.
After email enquiries with our contact at Oracle, it became
clear we would not gain access.

Before beginning video processing, we need to collect video
metadata for information such as video framerate. This ends
up manifesting itself as an extra sequential step in our pipeline,
adding to overall loading times. Fig 7 tries to visualise this and
highlight the impact this metadata loading has on initial video
load times. Consequently, the initial loading for some videos
can take several seconds, leading to a less than satisfactory
user experience.

Fig. 7. The video processing pipeline can run components in parallel,
but the majority of initial load time is a consequence of sequential
metadata loading.

D. Future Work

Given more processing power, future work may involve the
splitting of stream downloading. Too often the bottleneck of
the pipeline is the rate at which video frames are dispatched as

8Although a bug in Oracle’s console allowed us to increase this to 50.

jobs. If we were to split the process across multiple download
instances we should be able to achieve a higher processing
throughput.

The method with which video frame chunks are distributed
may not be the most efficient. Perhaps if frame chunks
were sent directly to available workers, we could mitigate
communication latency. During experiments, we found that
the frame workers were CPU bound, rather than IO bound, so
this is most likely a fine optimisation technique.

Rather than approaching CloudCats from an IaaS viewpoint,
a Faas (Function as a Service) design may have proved more
beneficial in terms of running costs and responsiveness. In this
manner, each component could be re-written to run only when
required, rather than constantly polling for jobs. Unfortunately,
this service isn’t provided by Oracle as of today, but others
such as Google App Engine and AWS Lambda are conceivable
choices.

V. CONCLUSION

CloudCats set out to change the online video landscape
for the better, which we think it has. Users can now view
their favourite YouTube videos in a new cat-like light without
waiting nine lifetimes for the video to render. CloudCats
message passing foundation and modular design means the
system is highly resilient to internal failures and potential cat-
astrophes.

The choice of cloud provider and Kubernetes means that
some functionality from Kubernetes such as auto-scaling and
internal load balancing are unavailable. As a silver lining,
though, since the support exists in Kubernetes for other cloud
providers and CloudCats is provider-agnostic, it is straightfor-
ward to fully set up using another provider.

REFERENCES

[1] The New York Times. ”What the Internet Can See From
Your Cat Pictures”. https://www.nytimes.com/2014/07/23/upshot/
what-the-internet-can-see-from-your-cat-pictures.html.

[2] Science of Us. ”So Heres a Study About Internet Cats”. http://nymag.
com/scienceofus/2015/06/heres-a-study-about-internet-cats.html.

[3] YouTube. ”You know whats cool? A billion hours”. https://youtube.
googleblog.com/2017/02/you-know-whats-cool-billion-hours.html.

[4] OpenFace facial recognition library. https://github.com/cmusatyalab/
openface.

[5] Browser Market Share. https://www.netmarketshare.com, 2017.
[6] Module Counts. http://www.modulecounts.com/.
[7] Monitoring & Vertically Scaling Node.js Ap-

plications. https://www.netguru.co/codestories/
monitoring-vertically-scaling-nodejs-applications.

[8] DashJS. https://github.com/Dash-Industry-Forum/dash.js.
[9] OpenFace 0.2.0: Higher accuracy and halved execution time. http://

bamos.github.io/2016/01/19/openface-0.2.0/.
[10] Minio. https://www.minio.io.
[11] RabbitMQ. rabbitmq.com.
[12] RabbitMQ Blog - Performance. http://www.rabbitmq.com/blog/tag/

performance/.
[13] RabbitMQ Performance Measurements, part 2. https://www.rabbitmq.

com/blog/2012/04/25/rabbitmq-performance-measurements-part-2/.
[14] Kubernetes. https://kubernetes.io.
[15] Docker Swarm. https://github.com/docker/swarm.
[16] Docker Hub - Roarster. https://hub.docker.com/u/roarster/.
[17] Oracle Cloud Infrastructure. https://cloud.oracle.com/

cloud-infrastructure.
[18] Let’s Encrypt. https://letsencrypt.org.

https://www.nytimes.com/2014/07/23/upshot/what-the-internet-can-see-from-your-cat-pictures.html
https://www.nytimes.com/2014/07/23/upshot/what-the-internet-can-see-from-your-cat-pictures.html
http://nymag.com/scienceofus/2015/06/heres-a-study-about-internet-cats.html
http://nymag.com/scienceofus/2015/06/heres-a-study-about-internet-cats.html
https://youtube.googleblog.com/2017/02/you-know-whats-cool-billion-hours.html
https://youtube.googleblog.com/2017/02/you-know-whats-cool-billion-hours.html
https://github.com/cmusatyalab/openface
https://github.com/cmusatyalab/openface
https://www.netmarketshare.com
http://www.modulecounts.com/
https://www.netguru.co/codestories/monitoring-vertically-scaling-nodejs-applications
https://www.netguru.co/codestories/monitoring-vertically-scaling-nodejs-applications
https://github.com/Dash-Industry-Forum/dash.js
http://bamos.github.io/2016/01/19/openface-0.2.0/
http://bamos.github.io/2016/01/19/openface-0.2.0/
https://www.minio.io
rabbitmq.com
http://www.rabbitmq.com/blog/tag/performance/
http://www.rabbitmq.com/blog/tag/performance/
https://www.rabbitmq.com/blog/2012/04/25/rabbitmq-performance-measurements-part-2/
https://www.rabbitmq.com/blog/2012/04/25/rabbitmq-performance-measurements-part-2/
https://kubernetes.io
https://github.com/docker/swarm
https://hub.docker.com/u/roarster/
https://cloud.oracle.com/cloud-infrastructure
https://cloud.oracle.com/cloud-infrastructure
https://letsencrypt.org


Fig. 8. Architecture of CloudCats.


	Introduction
	Design
	Cloud Provider
	Video Transcoding

	Implementation
	WebApp
	Audio/Video Download
	Frame Worker
	Video Transcoder
	Object Storage
	Message Queuing
	Reverse Proxying
	Orchestration
	Networking

	Analysis
	Scaling
	Provider Independence
	Current Limitations
	Future Work

	Conclusion
	References

